le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if_mod3(le2(y, x), s1(x), s1(y))
if_mod3(true, s1(x), s1(y)) -> mod2(minus2(x, y), s1(y))
if_mod3(false, s1(x), s1(y)) -> s1(x)
↳ QTRS
↳ DependencyPairsProof
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if_mod3(le2(y, x), s1(x), s1(y))
if_mod3(true, s1(x), s1(y)) -> mod2(minus2(x, y), s1(y))
if_mod3(false, s1(x), s1(y)) -> s1(x)
MINUS2(s1(x), y) -> IF_MINUS3(le2(s1(x), y), s1(x), y)
MINUS2(s1(x), y) -> LE2(s1(x), y)
LE2(s1(x), s1(y)) -> LE2(x, y)
IF_MOD3(true, s1(x), s1(y)) -> MINUS2(x, y)
MOD2(s1(x), s1(y)) -> IF_MOD3(le2(y, x), s1(x), s1(y))
IF_MINUS3(false, s1(x), y) -> MINUS2(x, y)
IF_MOD3(true, s1(x), s1(y)) -> MOD2(minus2(x, y), s1(y))
MOD2(s1(x), s1(y)) -> LE2(y, x)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if_mod3(le2(y, x), s1(x), s1(y))
if_mod3(true, s1(x), s1(y)) -> mod2(minus2(x, y), s1(y))
if_mod3(false, s1(x), s1(y)) -> s1(x)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
MINUS2(s1(x), y) -> IF_MINUS3(le2(s1(x), y), s1(x), y)
MINUS2(s1(x), y) -> LE2(s1(x), y)
LE2(s1(x), s1(y)) -> LE2(x, y)
IF_MOD3(true, s1(x), s1(y)) -> MINUS2(x, y)
MOD2(s1(x), s1(y)) -> IF_MOD3(le2(y, x), s1(x), s1(y))
IF_MINUS3(false, s1(x), y) -> MINUS2(x, y)
IF_MOD3(true, s1(x), s1(y)) -> MOD2(minus2(x, y), s1(y))
MOD2(s1(x), s1(y)) -> LE2(y, x)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if_mod3(le2(y, x), s1(x), s1(y))
if_mod3(true, s1(x), s1(y)) -> mod2(minus2(x, y), s1(y))
if_mod3(false, s1(x), s1(y)) -> s1(x)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
LE2(s1(x), s1(y)) -> LE2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if_mod3(le2(y, x), s1(x), s1(y))
if_mod3(true, s1(x), s1(y)) -> mod2(minus2(x, y), s1(y))
if_mod3(false, s1(x), s1(y)) -> s1(x)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LE2(s1(x), s1(y)) -> LE2(x, y)
POL( LE2(x1, x2) ) = max{0, 2x1 + 2x2 - 1}
POL( s1(x1) ) = 2x1 + 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if_mod3(le2(y, x), s1(x), s1(y))
if_mod3(true, s1(x), s1(y)) -> mod2(minus2(x, y), s1(y))
if_mod3(false, s1(x), s1(y)) -> s1(x)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
MINUS2(s1(x), y) -> IF_MINUS3(le2(s1(x), y), s1(x), y)
IF_MINUS3(false, s1(x), y) -> MINUS2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if_mod3(le2(y, x), s1(x), s1(y))
if_mod3(true, s1(x), s1(y)) -> mod2(minus2(x, y), s1(y))
if_mod3(false, s1(x), s1(y)) -> s1(x)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
IF_MINUS3(false, s1(x), y) -> MINUS2(x, y)
Used ordering: Polynomial Order [17,21] with Interpretation:
MINUS2(s1(x), y) -> IF_MINUS3(le2(s1(x), y), s1(x), y)
POL( true ) = 2
POL( false ) = 0
POL( s1(x1) ) = x1 + 2
POL( 0 ) = 2
POL( le2(x1, x2) ) = 1
POL( IF_MINUS3(x1, ..., x3) ) = 2x2 + 2
POL( MINUS2(x1, x2) ) = 2x1 + 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
MINUS2(s1(x), y) -> IF_MINUS3(le2(s1(x), y), s1(x), y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if_mod3(le2(y, x), s1(x), s1(y))
if_mod3(true, s1(x), s1(y)) -> mod2(minus2(x, y), s1(y))
if_mod3(false, s1(x), s1(y)) -> s1(x)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
MOD2(s1(x), s1(y)) -> IF_MOD3(le2(y, x), s1(x), s1(y))
IF_MOD3(true, s1(x), s1(y)) -> MOD2(minus2(x, y), s1(y))
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if_mod3(le2(y, x), s1(x), s1(y))
if_mod3(true, s1(x), s1(y)) -> mod2(minus2(x, y), s1(y))
if_mod3(false, s1(x), s1(y)) -> s1(x)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MOD2(s1(x), s1(y)) -> IF_MOD3(le2(y, x), s1(x), s1(y))
Used ordering: Polynomial Order [17,21] with Interpretation:
IF_MOD3(true, s1(x), s1(y)) -> MOD2(minus2(x, y), s1(y))
POL( IF_MOD3(x1, ..., x3) ) = max{0, 2x2 - 2}
POL( true ) = 2
POL( minus2(x1, x2) ) = 2x1
POL( if_minus3(x1, ..., x3) ) = max{0, 2x2 - 1}
POL( false ) = 2
POL( 0 ) = max{0, -1}
POL( s1(x1) ) = 2x1 + 1
POL( le2(x1, x2) ) = 1
POL( MOD2(x1, x2) ) = max{0, 2x1 - 1}
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
minus2(0, y) -> 0
if_minus3(true, s1(x), y) -> 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
IF_MOD3(true, s1(x), s1(y)) -> MOD2(minus2(x, y), s1(y))
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if_mod3(le2(y, x), s1(x), s1(y))
if_mod3(true, s1(x), s1(y)) -> mod2(minus2(x, y), s1(y))
if_mod3(false, s1(x), s1(y)) -> s1(x)